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Abstract—The problem of the stability of steady-state convective motion in the plane inclined fluid layer
with uniformly distributed heat sources is solved. The critical Grashof numbers and the critical disturbance
parameters are determined as the function of the angle of inclination for some Prandtl numbers. The
relationship between two-dimensional and three-dimensional disturbances is established. It is shown that
depending on the Prandtl number and the angle of inclination, the crisis of steady motion is either of
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NOMENCLATURE

Cartesian co-ordinates;

layer thickness;

acceleration of gravity;

mean density;

velocity;

pressure;

pressure;

temperature, temperature
disturbance;

volumetric density of internal heat
sources;

reduced density of heat sources;
velocity, temperature and pressure
in the steady regime;

Grashof number;

Prandtl number;

Rayleigh number;

wave-number of two-dimensional
disturbance;

wave-numbers of three-dimensional
disturbance;

expansion coefficients in Galerkin’s
method;

matrix elements;

minimum critical Grashof number;
wave-number and phase velocity of
critical disturbance;

hydrodynamic nature or is caused by the Rayleigh instability of the stratified fluid.

a=k.f(k? +k?)'/?, three-dimensional disturbance
parameter;

a, angle of inclination of the layer to
the vertical;

B.v, x, coeflicients of thermal expansion,
kinematic viscosity and thermal
diffusivity;

s unit vector along the upward
vertical;

v, streamfunction of two-
dimensional disturbances;

A=A, +iki, decrement of normal disturbance;

@(x), 0(x), disturbance amplitudes of
streamfunction and temperature;

©i, bk, base functions;

iy Vi, disturbance decrements at G =0.

INTRODUCTION

IN A NUMBER of works [1-9] the stability of the steady
plane-parallel convective motion in the fluid layer
between the heated parallel planes at different tem-
peratures is studied in detail. The solution of the
boundary-value problem for the amplitudes of small
normal disturbances has allowed the spectrum of the
characteristic disturbances to be determined and the
boundary of the flow stability to be found. Convective
motion with the odd (cubic) velocity profile was found
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to exhibit the instability of two types at a rather large
temperature difference. At small and moderate Prandtl
numbers, in the case of the vertical layer orientation,
the instability is of hydrodynamic nature and is due
to formation of steady eddies at the interface of con-
vective counterflows. At rather large Prandtl numbers
there appears and becomes most dangerous a new
instability mode due to development of disturbances
of the type of the amplified travelling heat waves in
the flow. The situation changes essentially in the case
of inclined orientation of the layer. If the layer is
inclined to the vertical so that the lower plane has a
higher temperature, then there also appears the
Rayleigh-type instability due to the density stratifica-
tion in the fluid heated from below. For the inclined
orientation of the layer the above mechanisms of the
instability interact, that, generally speaking, leads to a
rather complex situation. In particular, the relationship
between the two-dimensional and three-dimensional
disturbances is considerably complicated. So, if for the
vertical orientation the two-dimensional disturbances
are most dangerous, then in the Rayleigh region of the
inclination angles the crisis is due to three-dimensional
disturbances (at P > 0-25).

Recently the study has been made of one more inter-
esting type of convective motion due to internal heat
sources. In [ 10-11] the vertical orientation of the layer
with uniformly distributed heat generation within the
volume has been studied. In this case, unlike the flow
between the heated planes at different temperatures, the
steady flow is characterized by the even velocity and
temperature profiles, that results in essential pecul-
iarities of the structure of disturbance spectra and the
instability form. In [10] the problem has been solved
with a pure hydrodynamic statement: the effect of the
thermal factors on the disturbance development is
neglected. To this approximation, which corresponds
to the limiting case of small Prandtl numbers, the
stability boundary has been found, and the basic level
of the instability is shown to be related to the develop-
ment of two eddy systems at the interface of the upward
and downward streams. The solution of the problem
with a complete statement [9, 117] has shown that the
effect of thermal factors on the stability is very essential.
With increasing Prandtl numbers the Grashof number
G,, defining the boundary of the steady-state flow
stability decreases greatly, and at P — oc the asymptotic
law G,, ~ P~ "4 holds. The phase velocity of the neutral
disturbances increases with P, and the disturbances
themselves become of the travelling thermal wave type.

The aim of the present work is to study the flow
stability with internal heat gencration at the arbitrary
orientation of the layer. To solve the amplitude
boundary-value problem, Galerkin’s method is used.
The disturbance spectra and critical Grashof numbers

G. Z. GErsHUNL E. M. ZHUKRHOVITSKY and A. A. YAKIMOV

are found as the function of the problem parameters
for different orientations of the fayer. It is shown that
there exists a transformation which allows all infor-
mation on three-dimensional disturbances to be ob-
tained by solving the boundary-value problem on
two-dimensional disturbances (analog of the Squire
transformation). With the help of this transformation
the stability boundary is found for three-dimensional
disturbances, and these disturbances are shown to be
more dangerous over a wide range of the parameters
(inclination angle and Prandtl number).

STEADY MOTION

Consider the plane fluid layer 2h thick between
parallel plates. The layer is inclined to the vertical at
the angle « (Fig.1). The boundary planes are kept at
the same constant temperature. The internal heat
sources with the strength Q are uniformly distributed
within the fluid volume. The layer length is rather large,
and the steady motion in the region of the layer far
from the ends may therefore be considered plane-
parallel.

FiG. 1. Coordinate axes and velocity profile of
the main motion.

The heat convection equations in the Boussinesq
approximation is written as

Y 1
(j;+(vV)v= ~-)—Vp+vAv+g[)’Ty« (1)
¢ f
oT
{»“—+13VT:ZAT+2 R (2)
ct Pep
dive=0. 3)

For the steady-state plane-parallel motion we have
(the co-ordinates are shown in Fig. 1)

v =0, =0, v, = vo(x), T = To(x), p= polz). (4)
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Steady distributions of the velocity vo(x), temperature
To(x), and pressure po(z) are found from the equations

2 1d

d 2+gﬁTocosa—;£— , )]
d?7,

- (g = Q/pcpy), (6)

where C is the constant of variable separation defining
the longitudinal pressure gradient.

The boundary conditions will be formulated as
follows. On both planes x = +h the velocity vanishes,
and the temperature has a constant value taken as the
reference point

x=+hwy=0T,=0. (7
The remote ends of the channel are assumed to be

closed. This leads to the condition of a vanishing flow
rate through the layer cross-section

J‘h vo(x)dx = 0. (8)
—h

The solution of equations (5), (6) under conditions
(7) and (8} is of the form:

_ gBgh*cosa x\? x\*
qh* x\?
To(x) = 5 [1 —(ﬁ J (10)
Po(z) = 3pgBgh® cos . z + const. (11)

Thus, in the steady-state plane-paralle]l flow the tem-
perature distribution is quadratic over the cross-
section, and the velocity profile describes the central
upward and two downward convective flows (this
profile is shown in Fig. 1). From (9) it may be seen
that the velocity of motion is maximum for the vertical
orientation of a layer (« = 0), and at & — n/2 the velocity
tends to zero (equilibrium).

STATEMENT OF THE PROBLEM ON STABILITY

If the strength of internal sources is sufficiently large,
then the convective motion (9)-(11) becomes very
intensive and may therefore appear to be unstable. To
analyze the stability, the disturbed motion v+,
To+ T, po+ p will be considered where v, T, p are small
disturbances depending on time. The equations for
small disturbances are obtained from (1)-(3) by their
linearization near the steady-state solution (9)—(11).
Equations for small disturbances are written in a
dimensionless form with the following units: & is the
distance; h?/v is the time; gBgh*/2v is the velocity;
gh?/2 is the temperature; pgBqh®/2 is the pressure. The
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dimensionless disturbance equations are of the form:

1%
a—;’+ G(V) o+ (1V)8] = ~Vp+Av+ Ty, (12)
orT 1
4 GI(WTo) + (0VT)] = — AT. (13)
ot P
dive=20 (14)
where
hS
G= gﬁq2 and  P="
2v X

are the Grashof and Prandtl numbers; vy and T are
the dimensionless velocity and temperature profiles of
the main flow

Do) = 20 (1—6x%+5x%) = cosafol(x),  (15)

Tolx) = 1—x? (16)

At the layer boundaries the disturbances of a velocity
and temperature vanish

x=+1:0=0,T=0. 1n

It will be further seen that when studying the
stability of convective motion the two-dimensional
disturbances play an important role. Assuming
al// v,=0, v,= 6_1//

0z 7T T
( is the streamfunction) and eliminating the pressure,

the equations for two-dimensional disturbances are
obtained:

Uy = —

(18)

iA1/1+Gcosoz<f0 Ay —fo 'P)

0T oT
= Azl//+(cosa;—x+sinocg>, (19)

oT oT &y

E-I—G(focosoc -Ts P

Introduce the normal disturbances

¥ = @(x)exp[ —At+ikz]
= 0(x)exp[ — At +ikz].

!
) = ;AT 0

2n

Here ¢ and 0 are the amplitudes, k is the real wave
number for the periodicity of disturbances along the
z-axis; 4 is the disturbance decrement. Substitution of
(21) into (19) and (20) gives the amplitude equations

A’p—ikGceosa. Hp +cosalf +iksinaf = —1Agp, (22)

1
13A0+ ikG(Tgp — cosofpf) = —A6. (23)

Here the operator notations are introduced
2

d
A=_5-K. H=fA-f5.

The amplitudes ¢ and 0 satisfy the homogeneous
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boundary conditions
x=+lip=¢'=0,0=0. (24)
The amplitude boundary-value problem (22)-(24)
determines the spectrum of characteristic disturbances
and their decrements 4 = A, +i4;. The sign of the real
part of 1, defines damping (4, > 0) or growth (2, < 0) of
disturbances; the stability boundary is found from the
condition A, = 0. The imaginary part of the decrement
4; gives the frequency of the disturbance oscillations
and their phase velocity.

METHOD OF SOLUTION
For approximate solution of the spectral problem
(22)—(24) Galerkin’s method is used. The disturbance
amplitudes of the streamfunction and temperature are
presented in a series form with respect to some systems
of base functions
@ =aoPot+a1pi+ ... +an-1¢n-1.
0=>boOg+bi0;+...+bpy—10y_;.

Eigenfunctions of the following boundary-value
problem will be chosen as the base functions of ¢;

e +1)=i(£1)=0.

(25)

(26)

The base functions 60, are determined by the
boundary-value problem

Az(f’i = —uhe;,

1
]SAO,( = —wnbh, O(x1)=0.

The significance of the functions ¢; and 0y is quite
clear: these are the amplitudes of velocity and tem-
perature disturbances in the fluid layer at rest with no
heating (G = 0)*.

Substituting series (25) into amplitude equations (22)
and (23) and making up the orthogonality conditions
of Galerkin’s method yield the homogeneous linear
algebraic system of N + M equations for the coefficients
a;, by

27

N-1
Y [(pi—A)6in— ikG cos o HinJai
=0

M-
+ [cosa. Dgn+iksino. Cen )by =0
k=0
n=0,1,....N—1)

M-1 (28)
Y. [(ve—A)Sun+ikG.coso. Bym]. by
k=0 Mot

—ikG 2: Emﬂh==0

i=0

m=0,1,....M~1)

*The base of ¢; was suggested and used to solve the
Orr-Sommerfeld problem by Petrov [12,13]. It was used
for studying the disturbance spectrum of isothermal flows
[14-16]. The complete base of ¢;, 0, was used to study the
disturbance spectrum and the stability of the convective
flows between heated planes at different temperatures
[3.4.8,9].
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where d;, is the Kronecker delta, and the notations of
the matrix elements are introduced

1 1
iﬂi::f 4%1{¢idx~ Bhnzzf (hjbomdx,
1 1

1 1

Emi: 7B¢i0mdx~ Dk"==J
1

Orpndx,
1

1
Cin = J O, dx.
1

The normalized functions ¢; and 6, are assumed

1 1
J @idp;dx = —1, j fFdx = 1.
-1 -1

The condition for existence of a non-trivial solution
of system (28) leads to a dispersion equation, from
which the characteristic decrements of the disturbances
A are found as the function of the parameters k, G,
P, 2. To determine the spectrum J, it is thus necessary
to find the eigenvalues of the complex matrix cor-
responding to system (28).

Diagonalization of the matrix was performed numeri-
cally on the electronic computer with the help of the
QR-algorithm [17]. In the calculations the use was
made of approximations (25) which contain 8-14
functions in the ¢ and 0 series. The convergence was
checked by comparing the approximations with the
different number of base functions. The comparison
has shown that the approximations used give the suffi-
cient accuracy of the decrements and the critical
Grashof numbers over the range of the parameters
considered

DISCUSSION OF RESULTS. PLANE DISTURBANCES

Now the numerical results obtained will be discussed.
First the vertical orientation of the layer (x = 0) will
be briefly considered. Figure 2 gives the neutral curves
of Grashof number vs wave number for three values
of P. With an increase in P, the minimum critical
number G,, decreases monotonically. A plot of G,, vs P
is presented in Fig. 3. At large P the asymptotic relation

Gy, = 488/,/P (29)
is valid.

The comparison of the neutral curves for different
values of P shows strong thermal effects on the stability.
Even at P = 1 the values of G,, are considerably lower,
as compared to the limiting value G, = 1720, cor-
responding to purely hydrodynamic approximation
(P = 0). As P increases the minimum on the neutral
curve is shifted towards the small k, i.e. it passes to
the disturbances with a larger wave-length. It is inter-
esting that as far as P increases, the neutral curve shape
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F1G. 2. Neutral curves (vertical layer).

2

where J; is the imaginary part of the dimensionless
decrement, and k,, and G,, are the parameters of the
minimum point on the neutral curve. At all P the phase
velocity C, is negative (critical disturbances are the
travelling waves which propagate downward). At P =0
the drift speed of the critical disturbances is small
(Cn = —0-16). As far as P increases the phase velocity
grows monotonically, and at P = 20, for example, it
exceeds the maximum velocity of the undisturbed flow:
Cn,= —136.

Now we shall discuss the results on the inclined
layer. Calculations were made for the Prandtl numbers
P =01,1and 10.

Figures 4(a—c) gives families of the neutral curves
for various slopes and the above values of the Prandtl
number. It may be seen that at P = 01 for all angles
of inclinations the crisis occurs at the same instability
mode. At P=1 and P =10 the structure of the

-3
T

G, x10

6 8 10

F1G. 3. Critical Grashof number vs Prandtl number for a vertical layer.

changes essentially, and at P > 57 a closed loop*
appears on the curve. Thus, at large P the neutral
curve essentially consists of two branches, the absolute
minimum determining the crisis of steady motion
being achieved on the long-wave branch.

As far as the Prandtl number increases, the mode
responsible for instability is replaced: while at small P
instability is caused by hydrodynamic disturbances
(u—Ilevels of the spectrum), then with an increase in P
the instability passes to the disturbances of the thermal
wave type (v—Ievels). The replacement of the instability
mode is accompanied by a considerable growth of the
phase velocity of critical disturbances. This velocity in
the units of the maximum velocity of the upward flow
on the channel axis gfgh*/120 v may be written as:

60 4;

Cn=
kmGm

(30)

*A similar peculiarity in the shape of neutral curves is
found when studying the stability of a convective boundary
layer near a heated vertical plate [18].
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F1G. 4(a). Neutral curves for different angles of
inclination: P = 0-1.
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F1G. 4(b). Neutral curves for different angles of
inclination: P = 1.

7507

o 5001

250+

k

FiG. 4(c). Neutral curves for different angles of
inclination: P = 10.

families of the neutral curves is more complicated due
to the presence of two minima (over a certain range
of angles). As far as the angle of inclination to the
vertical o increases, the critical number G,, firstly grows,
and then when the absolute minimum passes to another
branch of the neutral curve G, start decreasing. The
replacement of the instability mode occurs at P =1

and P = 10 at the angles « = 49~ and x = 41 ", respec-
tively. Owing to the fact that the absolute minimum
passes to another branch of the neutral curve the critical
wave number k, (Fig.5) and the phase velocity of
critical disturbances C,, (Fig.6) as the function of the
inclination angle undergo a jump.

T

20r m

P\O\J
-

./
H="

0 30 60 90

a°®

Hu -
Ty

(]

Fi1G. 6. Phase velocity of critical disturbance vs the angle
of inclination.

The stability boundary vs a for three above values
of P is shown in Fig. 7 in the co-ordinates G, P, . As
is seen, at o = 90° the product G,.P = R, (critical
Rayleigh number) does not depend on P. This may be
expected: the limiting case x = 90” corresponds to the
horizontal layer of the fluid at rest stratified by the
internal heat sources along the vertical. In this case thc
problem is to study the fluid equilibrium stability with
the parabolic temperature distribution along the verti-
cal. As is known, the equilibrium crisis of the heated
fluid is determined by the Rayleigh number. At x = 90°
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0 30 2 €0 90

F1G. 7. Minimum critical Rayleigh number vs the angle
of inclination.

the critical Rayleigh number appears to be equal to
R, = 584, and the critical wave number, k, = 2:00.
These parameters agree with the values obtained when
studying the stability of the horizontal layer equi-
librium in [19].

As is seen from Fig. 6, at « — 90° the phase velocity
tends to zero. This also corresponds to the equilibrium
instability where, as is known, the crisis is related to
steady disturbances (fixed convective cells).

THREE-DIMENSIONAL DISTURBANCES

The results presented in the previous section refer to
the two-dimensional disturbances, whose all variables
areindependent of yand v, = 0. To study the behaviour
of three-dimensional disturbances in the steady motion
(9)-(11), it is necessary to refuse from assumptions (18),
(21) and to consider more general disturbances

{vx, 0y, 0, T, p) ~ exp[ —At+itkyy+k.2)],  (31)

where now v, # 0, and k, and k; are the wave numbers
for periodicity along the axes y and z. Substitution of
(31) into general disturbance equations (12)—(14) gives
the system of the equations for amplitudes of three-
dimensional disturbances as a function of x. This
system differs from the appropriate one for disturbances
in the flow between heated planes at different tem-
peratures only by the type of velocity and temperature
profiles of steady motion. It is therefore possible to
use the results of [5]. These are as follows. The
boundary-value problem for three-dimensional dis-
turbances may be reduced to that for two-dimensional
ones with the help of some transformations of the
unknown functions and parameters of the problem
(analog of the known Squire transformations). Thus,
all information on stability regarding three-dimen-
sional disturbances may be obtained from the above
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solution of the boundary-value problem for two-
dimensiona! disturbances. As is shown in [5], the
decrement A, the critical Grashof number for three-
dimensional disturbances with the wave numbers k,
and k. for the layer oriented at the angle « to the
vertical may be found if the decrement A, critical
Grashof number G, for two-dimensional disturbances
with the wave number & for the layer inclined to the
vertical at the angle & different from « are known. The
transformations of two-dimensional quantities marked
by the sign “~” into three-dimensional ones are as
follows:

kZ -~
tana = = tana

A=1  kK+ki=R

~ k\?
G=G\/sin25z+<k—> cos?q.

If the layer is vertical (x = 0), then from (32) we arrive at:

(32)

4=0, G=G-—. (33)

le‘z

Since the parameter k./k = k,/./k2+k2 < 1, hence it is
seen that G > G, i.e. for the vertical orientation higher
critical Grashof numbers correspond to three-dimen-
sional disturbances. As in the case of isothermal flows,
two-dimensional disturbances with k, =0 are most
dangerous.

For the horizontal layer (x = 90°) we have

5=90°, G=0 (34)

i.e. the critical numbers for two- and three-dimensional
disturbances coincide.

Now consider the range of the angles 0° < x < 90°.
To describe three-dimensional disturbances, it is con-
venient to introduce the parameter a = k./,/k2+k2.
The values of this parameter are written within the
range 0 < a < 1. The limiting case a = 1(k, = 0) cor-
responds to two-dimensional disturbances; the case
a = 0(k. = 0) corresponds to three-dimensional dis-
turbances shaped as rolls, whose axes are parallel to
the velocity of the main motion (“z-rolls”). Intermediate
values of “a” describe three-dimensional disturbances
with an arbitrary ratio of the wave numbers k./k,.
The critical parameters of three-dimensional disturb-
ances with a fixed value of “a” may be obtained from
transformations (32).

Figures 8(a—c) gives the families of the curves for
Gn(a) at different “a” with P =0-1, 1 and 10. As is
seen from Fig. 8(a), at small Prandtl numbers (P = 0-1)
the plane disturbances are most dangerous throughout
the whole range of angles of inclination (a = 1). Quite
a different situation occurs at not small P. As is seen
from Fig. 8(b,c) at P =1 and P = 10 the plane dis-
turbances are most dangerous if the angle of inclination
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F1G. 8(a). Critical Grashof numbers of three-dimensional
disturbances vs the angle of inclination: P = (-1,

2 =
)
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FiG. 8(b). Critical Grashof numbers of three-dimensional
disturbances vs the angle of inclination: £ = 1.

to the vertical is less than some 2,. At x> ¢, the
absolute minimum of the critical number G, passes to
the three-dimensional disturbances of the “z-roll” type
(a = 0). With increasing P the angle %, decreases: at
P=1and P =10 a. = 37° and «, = 18°, respectively.
At large P the “z-roll” type disturbances are thus re-
sponsible for the crisis of the steady motion over a
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F1G. 8(c). Critical Grashof numbers of three-dimensional
disturbances vs the angle of inclination: P = 10.

wide range of angles. However, it should be em-
phasized that for a vertical orientation the crisis 1s
associated with plane disturbances at all P.

The three-dimensional branch a = 0 corresponding
to the disturbances of the “z-roll” type may be directly
found from the boundary-value problem of the ampli-
tudes of normal disturbances. Assuming in 31} k. = 0
and substituting it into (12)-(14), we arrive at the
amplitude problem which does not contain the velocity

3 profile of the main motion:

~ = —p 4 vy~ kv~ Tsina,
— Aoy = —ikyp + (o) —kjv,),
—Jre = (1) —kiv.)+ T cos a,
1
~/1T+GT5UX:};(T"~I<;°.T), (35)
v+ ik,v, = 0,
x=tlio,=v, =0, = T=0.

As is easily seen, the problem for v, 5, pand T is
identical with that for the disturbances of fluid layer
at rest with the parabolic temperature distribution.* As
is known, this problem has the solution, at which there
appear steady disturbances determined from the con-
dition 4 = 0 at the stability boundary. The stability

*The third equation of {35) allows the velocity component
of v, to be found in terms of the temperature disturbance
amplitude T. This component differs from zero. Thus, the

disturbances of the “z-roll” type correspond to the liquid
motion following spiral trajectories.
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boundary is found by minimizing G(k,) and is given by:

R,=G.,P= ,R—O (36)

sina
where Ry = 584 is the critical Rayleigh number for a
horizontal layer. Formula (36) defines the boundary of
the flow stability with respect to the disturbances of
the “z-roll” type.

Thus, there exists, in a certain sense, a critical Prandtl
number P (approximately estimated B~ 0-6). If P < P,
then for all angles of inclination the crisis of steady
motion is of hydrodynamic nature and is caused by
plane disturbances. At P > P plane disturbances lead
to instability at the angles of inclination to the vertical
o < o, (the phase velocity of these disturbances differs
from zero, Fig. 6). At a > a, the disturbances of the
“z-roll” type are responsible for the crisis (the phase
velocity of these disturbances is zero). The crisis in the
range of the angles is, consequently, of convective
nature and is associated with the Rayleigh instability
of the stratified fluid.

CONCLUSIONS

Consideration is made of the stability of steady con-
vective motion due to internal heat sources in the
plane fluid layer oriented arbitrarily to the vertical.
The solution of the amplitude boundary-value problem
for plane normal disturbances is obtained by Galerkin’s
method. The critical Grashof numbers as well as the
wave numbers and phase velocities of the critical dis-
turbances are calculated depending on the inclination
angle of the layer for three values of the Prandtl
number: P = 0-1, 1, 10. Transformations similar to the
Squire one are shown to exist which allow the in-
formation on three-dimensional disturbances to be
obtained proceeding from the solution of a two-
dimensional problem. If P < 06, then throughout the
whole range of the angles of inclination the crisis is
caused by plane disturbances and is of hydrodynamic
nature. If P > 0-6, then the plane disturbances lead to
instability at the angles of inclination to the vertical
« < o where a, depends on P. In the range o > o, the
instability is attributable to spiral three-dimensional
disturbances of the “z-roll” type. The crisis in this range
is conditioned by the Rayleigh instability of the
stratified fluid.
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SUR LA STABILITE DU MOUVEMENT CONVECTIF
PLAN AVEC DES SOURCES INTERNES DE CHALEUR

Résumé—On résout le probléme de la stabilité du mouvement permanent convectif dans une couche

de fluide plane et inclinée, avec des sources de chaleur distribuées uniformément. Les nombres de Grashof

et les paramétres critiques de perturbation sont déterminés en fonction de I'angle d’inclinaison pour

quelques nombres de Prandtl. On établit la relation entre les perturbations bidimensionnelles et tri-

dimensionnelles. On montre que, dépendant du nombre de Prandtl et de I'angle d’inclinaison, la crise

du mouvement permanent est soit de nature hydrodynamique, soit liée a I'instabilit¢ de Rayleigh du
fluide stratifié.

UBER DIE STABILITAT EINER FLACHENP_ARALLELEN
KONVEKTIVEN BEWEGUNG BEI INNEREN WARMEQUELLEN

Zusammenfassung—Das Problem der Stabilitédt von stationirer konvektiver Bewegung in der geneigten

Fluidschicht mit gleichmiBig verteilten Wirmequellen wird geldst. Die kritischen Grashof-Zahlen und

kritischen Storparameter werden in Abhéngigkeit des Neigungswinkels fiir einige Prandtl-Zahlen

bestimmt. Die Beziehungen zwischen 2- und 3-dimensionalen Storungen werden aufgestellt. Es wird

gezeigt, dal abhiingig von der Prandtl-Zahl und dem Neigungswinkel die Unterbrechung der stetigen

Bewegung entweder hydrodynamische Griinde hat oder von der Rayleigh-Instabilitit des geschichteten
Fluids verursacht wird.

OB YCTOMYUBOCTU TIJIOCKOITAPAJJIEJIBHOI'O KOHBEKTUBHOI'O JBUXEHWUI,
BBI3BAHHOI'O BHYTPEHHUMHW WCTOYHUKAMM TEIUIA

Annorauus — PeitieHa 3ajaya 00 YCTOMYMBOCTM CTalLIHOHAPHOIO KOHBEKTUBHOI'O IBHXKEHHS B
IIOCKOM HAaKJIOHHOM CII0€ XHUIKOCTH, B KOTOPO# ONHOPOIHO paclpene/ICHbl BHYTPEHHHE HCTOYHHKH
tera. Omnpenenedsl KpuTHYeckHe uucna ['pacroda M nmapamMeTpbl KPHTHYECKMX BO3MYILEHHHA B
3aBUCHMOCTH OT YIJIa HAKIOHA CJIOS IS HEKOTOpBIX 3Ha4eHWit uMcra IlpanaTis. YcTraHOBiEHO
COOTHOIUEHHE MEXIY [UIOCKMMH M IIPOCTPAHCTBEHHBIMH BO3MyLUeHHsAMHM. [Toka3aHo, 4TO B 3aBHCH-
MOCTH OT yncia IIpaHaTas | yrila Hak/IOHA KPHU3UC CTAUMOHAPHOTO IBHXKEHHA MMeeT nubo ruapo-
NMHAMMYECKYIO HpHpOIy, JIMGO CBA3aH C P3TEEBCKOM HEYyCTOWYHBOCTBIO CTPaTHOHIMPOBARHHOH
XKHAKOCTH.



