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Abstract-The problem of the stability of steady-state convective motion in the plane inclined fluid layer 
with uniformly distributed heat sources is solved. The critical Grashof numbers and the critical disturbance 
parameters are determined as the function of the angle of inclination for some Prandtl numbers. The 
relationship between two-dimensional and three-dimensional disturbances is established. It is shown that 
depending on the Prandtl number and the angle of inclination, the crisis of steady motion is either of 

hydrodynamic nature or is caused by the Rayleigh instability of the stratified fluid 
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NOMENCLATURE 

Cartesian co-ordinates; 
layer thickness; 

acceleration of gravity; 

mean density; 

velocity; 

pressure; 
pressure; 

temperature, temperature 
disturbance; 

volumetric density of internal heat 
sources; 
reduced density of heat sources; 
velocity, temperature and pressure 
in the steady regime; 

Grashof number; 
Prandtl number; 

Rayleigh number; 
wave-number of two-dimensional 
disturbance; 
wave-numbers of three-dimensional 
disturbance; 

expansion coefficients in Galerkin’s 
method; 

a = k,/(k: + kf)“‘, three-dimensional disturbance 

parameter; 

a, angle of inclination of the layer to 

the vertical; 

8, v, X, coefficients of thermal expansion, 

kinematic viscosity and thermal 
diffusivity; 

>I I? unit vector along the upward 

vertical; 

$> streamfunction of two- 
dimensional disturbances; 

1=I,+iLi, decrement of normal disturbance; 

cp(X)> Q(x), disturbance amplitudes of 
streamfunction and temperature; 

(Pi, ok, base functions; 

pi, Vkr disturbance decrements at G = 0. 

INTRODUCTION 

IN A NUMBER of works [l-9] the stability of the steady 
plane-parallel convective motion in the fluid layer 
between the heated parallel planes at different tem- 
peratures is studied in detail. The solution of the 
boundary-value problem for the amplitudes of small 

f&i, Bkm 1 Emi 3 Dkn 3 ckn 1 matrix elements; normal disturbances has allowed the spectrum of the 
G 

k:‘cm, 

minimum critical Grashof number; characteristic disturbances to be determined and the 
wave-number and phase velocity of boundary of the flow stability to be found. Convective 
critical disturbance; motion with the odd (cubic) velocity profile was found 
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to exhibit the instability of two types at a rather large 
temperature difference. At small and moderate Prandtl 
numbers, in the case of the vertical layer orientation. 
the instability is of hydrodynamic nature and is due 

to formation of steady eddies at the interface of con- 

vective counterflows. At rather large Prandtl numbers 
there appears and becomes most dangerous a flew 

instabiijty mode due to devefopment of distur~nces 

of the type of the amplified travelling heat waves in 
the flow. The situation changes essentially in the case 
of inclined orientation of the layer. If the layer is 

inclined to the vertical so that the lower plane has a 
higher temperature, then there also appears the 

Rayleigh-type instability due to the density stratifica- 
tion in the fluid heated from below. For the inclined 

orientation of the layer the above mechanisms of the 

instability interact, that, generally speaking, leads to a 
rathercomplex situation. In particular, the relationship 

between the two-dimensional and three-dimens~on~~~ 
disturbances is considerahty compIicated. So, if for the 

vertical orientation the two-dimensional disturbances 
are most dangerous, then in the Rayleigh region of the 

inclination angles the crisis is due to three-dimensional 
disturbances (at P > 0.25). 

Recently the study has been made of one more inter- 

esting type of convective motion due to internal heat 
sources. In [lo-l I] the vertical orientation of the layer 

with uniformly distributed heat generation within the 
volume has been studied. In this case, unlike the flow 

between the heated planes at different temperatures, the 

steady fIow is characterized by the even velocity and 
temperature profiles, that results in essential pecui- 

iarities of the structure of disturbance spectra and the 
instability form. In [lo] the problem has been solved 

with a pure hydrodynamic statement: the effect of the 
thermal factors on the disturbance development is 
neglected. To this approximation, which corresponds 
to the limiting case of small Prandtl numbers. the 

stability boundary has been found, and the basic level 
of the instability is shown to be related to the develop- 
ment of two eddy systems at the interface of the upward 
and downward streams. The solution of the problem 
with a complete statement 19, 1 l] has shown that the 
effect of thermal factors on the stability is very essential. 
With increasing Prandtl numbers the Grashof number 
G, defining the boundary of the steady-state flow 
stability decreases greatly, and at P + x the asymptotic 
law G, 5 P- 1 ,A holds. The phase velocity of the neutral 
disturbances increases with P, and the disturbances 
themselves become of the travelling thermal wave type. 

The aim of the present work is to study the flow 
stability with internal heat generation at the arbitrary 
orientation of the layer. To solve the amplitude 
boundary-value problem, Galerkin’s method is used. 
The disturbance spectra and critical Grashof numbers 

are found as the function of the problem parameters 
for different orientations of the layer. It is shown that 
there exists a transformation which allows ail infor- 
mation on three-dimensional disturbances to bc oh- 

tained by solving the boundary-value problem on 
two-dimensional disturbances (analog of the Squire 

transformation). With the help of this transform~ltio~~ 
the stability boundary is found for tiiree-dimcnsioIl~ll 

disturbances, and these disturbances are shown to hc 
more dangerous over a wide range of the parameters 
(inclination angle and Prandtl number). 

STEADY MOTION 

Consider the plane fluid layer 211 thick between 

parallel plates. The layer is inclined to the vertical at 
the angle x (Fig. 1). The boundary planes are kept at 

the same constant temperature. The internal heat 

sources with the strength Q arc uniformly distributed 
within the fluid volume. The layer length is rather large, 

and the steady motion in the region of the layer far 
from the ends may therefore be considered planc- 

parallel. 

FIG. 1. Coordinate axes and velocity profile of 
the main motion. 

The heat convection equations in the Boussinesq 
approximation is written as 

?V 
j;+(vV)v= -;;Vp+vAu+y~Ty. iI) 

c:T -+vvT=~AT+Q it PC,’ 
div E = 0. (3) 

For the steady-state plane-parallel motion we have 
(the co-ordinates are shown in Fig. 1) 

t’, = I$ = 0. & = a&L). T = T”(X), p = PO(Z). (4) 
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Steady distributions of the velocity Q(X), temperature 

T,(x), and pressure p,,(z) are found from the equations 

(5) 

d2T, 
p = -4, (4 = Qlwpx), 

where C is the constant of variable separation defining 
the longitudinal pressure gradient. 

The boundary conditions will be formulated as 

follows. On both planes x = + h the velocity vanishes, 
and the temperature has a constant value taken as the 
reference point 

x= _th:u,=O,TO=O. (7) 

The remote ends of the channel are assumed to be 
closed. This leads to the condition of a vanishing flow 
rate through the layer cross-section 

s 

h 
uO(x) dx = 0. (8) 

-h 

The solution of equations (5) (6) under conditions 
(7) and (8) is of the form: 

u 
0 

(xl = gPqh4cos a 
120v [l-6($+5(:)*], (9) 

) (10) 

PO(Z) = ~pgfiqh2cos a. z + const. (11) 

Thus, in the steady-state plane-parallel flow the tem- 
perature distribution is quadratic over the cross- 

section, and the velocity profile describes the central 

upward and two downward convective flows (this 
profile is shown in Fig. 1). From (9) it may be seen 
that the velocity of motion is maximum for the vertical 

orientation of a layer (a = 0), and at a -+ 7-r/2 the velocity 
tends to zero (equilibrium). 

STATEMENT OF THE PROBLEM ON STABILITY 

If the strength of internal sources is sufficiently large, 
then the convective motion (9)-(11) becomes very 
intensive and may therefore appear to be unstable. To 
analyze the stability, the disturbed motion uo+u, 
TO + T, p. + p will be considered where u, T, p are small 
disturbances depending on time. The equations for 
small disturbances are obtained from (l)-(3) by their 
linearization near the steady-state solution (9)-(11). 
Equations for small disturbances are written in a 
dimensionless form with the following units: h is the 
distance; h2/v is the time; gj?qh4/2v is the velocity; 
gh2/2 is the temperature; pgPqh3/2 is the pressure. The 

dimensionless disturbance equations are of the form: 

dV 
~+G[(vV)vo+(uoV)v] = -Vp+Au+Ty, (12) 

dT 
Z + G[(uVT,) + (voVT)] = + AT. (13) 

div v = 0 (14) 

where 
G = gL%h5 

__ and 
2v2 

p=’ 
x 

are the Grashof and Prandtl numbers; u. and To are 
the dimensionless velocity and temperature profiles of 

the main flow 

uo(x) = T (1 -6x2 +5x4) = cos afo(x), (15) 

To(x) = 1 -x2. (16) 

At the layer boundaries the disturbances of a velocity 

and temperature vanish 

x= kl:u=O,T=O. (17) 

It will be further seen that when studying the 

stability of convective motion the two-dimensional 

disturbances play an important role. Assuming 

slcl a* 
u,= -12, uy = 0, c’, z - 

ax (18) 

($ is the streamfunction) and eliminating the pressure, 
the equations for two-dimensional disturbances are 

obtained: 

Introduce the normal disturbances 

$ = cp(x)exp[-lt+ikz] 

T = Q(x) exp [ - Lt + ikz]. 

(19) 

(20) 

(21) 

Here cp and f3 are the amplitudes, k is the real wave 

number for the periodicity of disturbances along the 
z-axis; i is the disturbance decrement. Substitution of 
(21) into (19) and (20) gives the amplitude equations 

A2q - ikG cos a. HC+J + cos cd + ik sin a0 = - LA.cp, (22) 

iAO+ikG(Tdq-cosq(os) = -&I 

Here the operator notations are introduced 

(23) 

A =$-k2, H = foA- fd’. 

The amplitudes cp and 0 satisfy the homogeneous 
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boundary conditions 

x= +l:cp=cpr=o, n=o. (24) 
The amplitude boundary-value problem (22)-(24) 

determines the spectrum of characteristic disturbances 

and their decrements i = 3,, + iii. The sign of the real 

part of 1, defines damping (1, > 0) or growth (I., < 0) of 
disturbances; the stability boundary is found from the 

condition 1, = 0. The imaginary part of the decrement 

ii gives the frequency of the disturbance oscillations 
and their phase velocity. 

METHOD OF SOLUTION 

For approximate solution of the spectral problem 

(22)-(24) Galerkin’s method is used. The disturbance 
amplitudes of the streamfunction and temperature are 
presented in a series form with respect to some systems 
of base functions 

~=ao%+alcpl+ . . . +U~-lcp~-i. 

0=boHo+b181+...+h~_~BM_~. 
(25) 

Eigenfunctions of the following boundary-value 

problem will be chosen as the base functions of vi 

A2qi = -/LiA(Pi, qi( + 1) = ~p:( + 1) = 0. (26) 

The base functions Ok are determined by the 
boundary-value problem 

!A& = -v&, 
P 

Ilk(*l)=o. (27) 

The significance of the functions (Pi and Ok is quite 

clear: these are the amplitudes of velocity and tem- 
perature disturbances in the fluid layer at rest with no 

heating (G = O)*. 
Substituting series (25) into amplitude equations (22) 

and (23) and making up the orthogonality conditions 
of Galerkin’s method yield the homogeneous linear 
algebraic system of N + M equations for the coefficients 

ai,bk: 

N-l 

,go [(~i-~)6i,-ikGCOScc.Hin]ai 

M-l 

+ c [cosa.&,+iksincc.Ckn]bk = 0 
k=O 

M-l 

(n=O,l,...,N-1) (28) 

kgo [h -A)&, + ikG cos a. &,,,I bk 

N- 1 
- ikG ‘.C- E,iai = 0 

i=O 

(m=O,l,...,M-1) 

*The base of cpi was suggested and used to solve the 
Orr-Sommerfeld problem by Petrov [l&13]. It was used 
for studying the disturbance spectrum of isothermal flows 
[14-161. The complete base of (pi, Bk was used to study the 
disturbance spectrum and the stability of the convective 
flows between heated planes at different temperatures 
[3,4.8,9]. 

where hik is the Kronecker delta, and the notations of 
the matrix elements are introduced 

The normalized functions (Pi and 0, are assumed 

s 

1 1 
cpiArpidx = -1. 

s 
O;dx = 1. 

-1 -1 

The condition for existence of a non-trivial solution 
of system (28) leads to a dispersion equation, from 

which the characteristic decrements of the disturbances 
1 are found as the function of the parameters k, G, 
P, u. To determine the spectrum 1, it is thus necessary 

to find the eigenvalues of the complex matrix cor- 
responding to system (28). 

Diagonalization of the matrix was performed numeri- 
cally on the electronic computer with the help of the 
QR-algorithm [17]. In the calculations the use was 

made of approximations (25) which contain 8-14 
functions in the cp and 0 series. The convergence was 
checked by comparing the approximations with the 

different number of base functions. The comparison 

has shown that the approximations used give the suffi- 
cient accuracy of the decrements and the critical 
Grashof numbers over the range of the parameters 

considered 

DISCUSSION OF RESULTS. PLANE DISTURBANCES 

Now the numerical results obtained will be discussed. 
First the vertical orientation of the layer (a = 0) will 
be briefly considered. Figure 2 gives the neutral curves 
of Grashof number vs wave number for three values 
of P. With an increase in P, the minimum critical 
number G, decreases monotonically. A plot of G, vs P 
is presented in Fig. 3. At large P the asymptotic relation 

is valid. 

G, = 488/fi (29) 

The comparison of the neutral curves for different 
values of P shows strong thermal effects on the stability. 
Even at P = 1 the values of G, are considerably lower, 
as compared to the limiting value G, = 1720, cor- 
responding to purely hydrodynamic approximation 
(P = 0). As P increases the minimum on the neutral 
curve is shifted towards the small k, i.e. it passes to 

the disturbances with a larger wave-length. It is inter- 
esting that as far as P increases, the neutral curve shape 
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where li is the imaginary part of the dimensionless 

decrement, and k, and G, are the parameters of the 

minimum point on the neutral curve. At all P the phase 

velocity C, is negative (critical disturbances are the 

travelling waves which propagate downward). At P = 0 
the drift speed of the critical disturbances is small 

(C,,, = -0.16). As far as P increases the phase velocity 
grows monotonically, and at P = 20, for example, it 

exceeds the maximum velocity of the undisturbed flow: 

C,,, = - 1.36. 
Now we shall discuss the results on the inclined 

layer. Calculations were made for the Prandtl numbers 

P = 0.1, 1 and 10. 
Figures 4(a-c) gives families of the neutral curves 

for various slopes and the above values of the Prandtl 

0 I 2 3 
number. It may be seen that at P = 0.1 for all angles 

k of inclinations the crisis occurs at the same instability 
FIG. 2. Neutral curves (vertical layer). mode. At P = 1 and P = 10 the structure of the 

J 

I 2 4 6 8 IO 
P 

FIG. 3. Critical Grashofnumber vs Prandtl number for a vertical layer. 

changes essentially, and at P > 5.7 a closed loop* 
appears on the curve. Thus, at large P the neutral 
curve essentially consists of two branches, the absolute 

minimum determining the crisis of steady motion 
being achieved on the long-wave branch. 

As far as the Prandtl number increases, the mode 

responsible for instability is replaced: while at small P 
instability is caused by hydrodynamic disturbances 
(p-levels of the spectrum), then with an increase in P 
the instability passes to the disturbances of the thermal 

wave type (v-levels). The replacement of the instability 
mode is accompanied by a considerable growth of the 
phase velocity of critical disturbances. This velocity in 
the units of the maximum velocity of the upward flow 
on the channel axis g/?qh4/120 v may be written as: 

(30) 

j- 

10 

'0 
x 
Q 

3 

I L 
0 I 2 

k 

FIG. 4(a). Neutral curves for different angles of 
inclination: P = 0.1. 

*A similar peculiarity in the shape of neutral curves is 
found when studying the stability of a convective boundary 
layer near a heated vertical plate [ 181. 

P=O.I 

90” x 00” 
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FIG. 4(b). Neutral curves for different angles of 
inclination: P = 1. 
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FIN. 4(c). Neutral curves for different angles of 
inclination: P = 10. 

families of the neutral curves is more complicated due 
to the presence of two minima (over a certain range 
of angles). As far as the angle of inclination to the 
vertical o! increases, the critical number G, firstly grows, 
and then when the absolute minimum passes to another 
branch of the neutral curve G, start decreasing. The 
replacement of the instability mode occurs at P = 1 

and P = 10 at the angles c( = 49 and EY = 41 rcspec- 
tively. Owing to the fact that the absolute minimum 
passes to another branch of the neutral curve the critical 

wave number k, (Fig.5) and the phase velocity of 
critical disturbances C,,, (Fig. 6) as the function of the 
inclination angle undergo a jump. 

25, - 

IO 
0 30 60 

a0 

FIG. 5. Critical wave number vs the angle of inclination. 

a0 
0 30 60 

-05. 

Cm 

I co1 

n P=I 

III P=10 

FIG. 6. Phase velocity of critical disturbance vs the angle 
of inclination. 

The stability boundary vs CI for three above values 
of P is shown in Fig. 7 in the co-ordinates G,P, x. As 
is seen, at a = 90” the product G,. P = R, (critical 
Rayleigh number) does not depend on P. This may be 
expected: the limiting case Y = 90’ corresponds to the 
horizontal layer of the fluid at rest stratified by the 
internal heat sources along the vertical. In this case the 
problem is to study the fluid equilibrium stability with 
the parabolic temperature distribution along the verti- 
cal. As is known, the equilibrium crisis of the heated 
fluid is determined by the Rayleigh number. At 2 = 90’ 
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solution of the boundary-value problem for two- 

dimensiona! disturbances. As is shown in [5], the 

decrement i, the critical Grashof number for three- 
dimensional disturbances with the wave numbers k, 

and k, for the layer oriented at the angle a to the 
vertical may be found if the decrement z, critical 

Grashof number f?, for two-dimensional disturbances 
with the wave number R for the layer inclined to the 

vertical at the angle E different from x are known. The 

transformations of two-dimensional quantities marked 

by the sign “-” into three-dimensional ones are as 

follows: 

I I 
0 30 

(10 
60 90 

FIG. 7. Minimum critical Rayleigh number vs the angle 
of inclination. 

the critical Rayleigh number appears to be equal to 
R, = 584, and the critical wave number, k, = 2.00. 

These parameters agree with the values obtained when 
studying the stability of the horizontal layer equi- 
librium-in [19]. 

As is seen from Fig. 6, at o! + 90” the phase velocity 
tends to zero. This also corresponds to the equilibrium 

instability where, as is known, the crisis is related to 
steady disturbances (fixed convective cells). 

THREE-DIMENSIONAL DISTURBANCES 

The results presented in the previous section refer to 
the two-dimensional disturbances, whose all variables 

are independent of y and vy = 0. To study the behaviour 

of three-dimensional disturbances in the steady motion 
(9)-(1 l), it is necessary to refuse from assumptions (18) 
(21) and to consider more general disturbances 

(u,,c,,v,,T,p)-exp[-It+i(k,y+k,z)], (31) 

where now vY # 0, and k, and k, are the wave numbers 
for periodicity along the axes y and z. Substitution of 
(31) into general disturbance equations (12)-(14) gives 
the system of the equations for amplitudes of three- 
dimensional disturbances as a function of x. This 
system differs from the appropriate one for disturbances 
in the flow between heated planes at different tem- 
peratures only by the type of velocity and temperature 
profiles of steady motion. It is therefore possible to 
use the results of [5]. These are as follows. The 
boundary-value problem for three-dimensional dis- 
turbances may be reduced to that for two-dimensional 
ones with the help of some transformations of the 
unknown functions and parameters of the problem 
(analog of the known Squire transformations). Thus, 
all information on stability regarding three-dimen- 
sional disturbances may be obtained from the above 

a = x, 

(32) 

If the layer is vertical (a = 0), then from (32) we arrive at: 

Since the parameter k,/k = k,/,/m < 1, hence it is 
seen that G > G, i.e. for the vertical orientation higher 

critical Grashof numbers correspond to three-dimen- 

sional disturbances. As in the case of isothermal flows, 
two-dimensional disturbances with k, = 0 are most 

dangerous. 
For the horizontal layer (a = 90”) we have 

C = 90”, G=c? (34) 

i.e. the critical numbers for two- and three-dimensional 

disturbances coincide. 
Now consider the range of the angles 0” < a < 90”. 

To describe three-dimensional disturbances, it is con- 

venient to introduce the parameter a = kJJ=. 

The values of this parameter are written within the 

range 0 < a < 1. The limiting case a = l(k, = 0) cor- 

responds to two-dimensional disturbances; the case 
a = O(k, = 0) corresponds to three-dimensional dis- 

turbances shaped as rolls, whose axes are parallel to 
the velocity of the main motion (“z-rolls”). Intermediate 
values of “a” describe three-dimensional disturbances 
with an arbitrary ratio of the wave numbers kJk,,. 

The critical parameters of three-dimensional disturb- 

ances with a fixed value of “a” may be obtained from 
transformations (32). 

Figures 8(a-c) gives the families of the curves for 
G,,,(a) at different “a” with P = 0.1, 1 and 10. As is 
seen from Fig. 8(a), at small Prandtl numbers (P = 0.1) 
the plane disturbances are most dangerous throughout 
the whole range of angles of inclination (a = 1). Quite 
a different situation occurs at not small P. As is seen 
from Fig. 8(b, c) at P = 1 and P = 10 the plane dis- 
turbances are most dangerous if the angle of inclination 
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30 60 

a* 

i 
30 

FIG. 8(a). Critical Grashof numbers of three-dimensional FIG. 8(c). Critical Grashof numbers of three-dimensional 
disturbances vs the angle of inclination: P = Od, disturbances vs the angle of inclination: P = 10. 

I I 1 
oe 0.3 

‘D 
oe ato 

Frc;. 8(b). Critical Grashof numbers of three-dimensional 
disturbances vs the angle of inclination: P = I. 

to the vertical is less than some xr~ At z > N, the 
absolute minimum of the critical number G, passes to 
the three-dimensional disturbances of the “z-roll” type 
(a = 0). With increasing P the angle rx. decreases: at 
P = 1 and P = 10 a, = 37” and oc, = 18’. respectively. 
At large P the “z-roll” type disturbances are thus re- 
sponsible for the crisis of the steady motion over a 

P=Io 

0 30 60 9 

cla 

wide range of angles. However, it should be em- 

phasized that for a vertical orientation the crisis is 

associated with plane disturbances at all P. 

The three-dimensional branch a = 0 corresponding 

to the disturbances of the “xoll” type may be directly 

found from the boundary-value problem of the ampli- 

tudes of normal disturbances. Assuming in (3 1) kZ = 0 
and substituting it into (12)~(14, we arrive at the 
amplitude problem which does not contain the velocity 

profile of the main motion: 

As is easily seen, the problem for D,. ryr p and T is 

identical with that for the disturbances of fluid layer 
at rest with the parabolic temperature distribution.* As 
is known, this problem has the solution. at which there 

appear steady disturbances determined from the con- 
dition i = 0 at the stability boundary. The stability 
--- -. _, ~-- _._._--. ~- 

*The third equation of(35) allows the velocity component 
of oI to be found in terms of the temperature disturbance 
amplitude T. This component differs from zero. Thus, the 
disturbances of the “~-roil” type correspond to the liquid 
motion following spiral trajectories. 
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boundary is found by minimizing G(k,) and is given by: 
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R, = G,P = 5 
sin a 

where R0 = 584 is the critical Rayleigh number for a 
horizontal layer. Formula (36) defines the boundary of 
the flow stability with respect to the disturbances of 

the “z-roll” type. 
Thus, there exists, in a certain sense, a critical Prandtl 

number P (approximately estimated P 2 0.6). If P < p, 

then for all angles of inclination the crisis of steady 
motion is of hydrodynamic nature and is caused by 
plane disturbances. At P > p plane disturbances lead 
to instability at the angles of inclination to the vertical 
c( < a, (the phase velocity of these disturbances differs 

from zero, Fig. 6). At a > cc the disturbances of the 

“z-roll” type are responsible for the crisis (the phase 
velocity of these disturbances is zero). The crisis in the 
range of the angles is, consequently, of convective 

nature and is associated with the Rayleigh instability 

of the stratified fluid. 

CONCLUSIONS 

Consideration is made of the stability of steady con- 
vective motion due to internal heat sources in the 
plane fluid layer oriented arbitrarily to the vertical. 
The solution of the amplitude boundary-value problem 
for plane normal disturbances is obtained by Galerkin’s 
method. The critical Grashof numbers as well as the 

wave numbers and phase velocities of the critical dis- 
turbances are calculated depending on the inclination 
angle of the layer for three values of the Prandtl 

number: P = 0.1, 1, 10. Transformations similar to the 
Squire one are shown to exist which allow the in- 
formation on three-dimensional disturbances to be 

obtained proceeding from the solution of a two- 
dimensional problem. If P < 0.6, then throughout the 
whole range of the angles of inclination the crisis is 

caused by plane disturbances and is of hydrodynamic 
nature. If P > 0.6, then the plane disturbances lead to 
instability at the angles of inclination to the vertical 

CI < u., where cc depends on P. In the range a > r, the 
instability is attributable to spiral three-dimensional 

disturbances of the “z-roll” type. The crisis in this range 
is conditioned by the Rayleigh instability of the 

stratified fluid. 
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SLJR LA STABILITE DU MOUVEMENT CONVECTIF 
PLAN AVEC DES SOURCES INTERNES DE CHALEUR 

Resume-On r&out le probleme de la stabilite du mouvement permanent convectif dam une couche 
de tluide plane et inclinte, avec des sources de chaleur distribuees uniformement. Les nombres de Grashof 
et les parametres critiques de perturbation sont determines en fonction de I’angle d’inchnaison pour 
quelques nombres de Prandtl. On etablit la relation entre les perturbations bidimensionnelles et tri- 
dimensionnelles. On montre que, d&pendant du nombre de Prandtl et de I’angle d’inclinaison, la crise 
du mouvement permanent est soit de nature hydrodynamique, soit lice a I’instabilite de Rayleigh du 

fluide stratitie. 

UBER DIE STABILITAT EINER FLACHENPARALLELEN 
KONVEKTIVEN BEWEGUNG BE1 INNEREN WARMEQUELLEN 

Zusammenfassung-Das Problem der Stabihtat von stationarer konvektiver Bewegung in der geneigten 
Fluidschicht mit gleichmPBig verteilten Wlrmequellen wird gel&t. Die kritischen Grashof-Zahlen und 
kritischen St&parameter werden in Abhlngigkeit des Neigungswinkels fur einige Prandtl-Zahlen 
bestimmt. Die Beziehungen zwischen 2- und 3-dimensionalen Storungen werden aufgestellt. Es wird 
gezeigt, dab abhangig von der Prandtl-Zahl und dem Neigungswinkel die Unterbrechung der stetigen 
Bewegung entweder hydrodynamische Griinde hat oder von der Rayleigh-Instabilitat des geschichteten 

Fluids verursacht wird. 

OE YCTOHYHBOCTM IIJIOCKOIIAPAJIJIEJIbHOFO KOHBEKTHBHOFO ABMXCEHMII, 
BbISBAHHOI-0 BHYTPEHHMMM BCTOYHHKAMB TEI-IJIA 

AimoTaqHR- PellEHa 3&4a’Gl 06 YCTOfiWiBOCTR CTaIJMOHaPHOrO KOHBeKTHBHOTO IIBll)l(eHIIR B 

IIIIOCKOMHBK~OHHOMCJIOeX0iAKOCTH,BKOTOPOfiOAHOPOAHO paC~peAeJleHb1 BHyTpeHHHUiCTOYHkiKH 

Tel7JIa. OtIptZ~eneHbI KpHTEi’ieCKHe YHCJIIB rpaCrO+i II IIapaMeTpbI KpEiTWieCKHX B03MJ’IlWHAfi B 

3BBHCUMOCTH OT )‘rJIa HaKJIOHa CJIOR AJI5l H’ZKOTOPbIX 3Ha’ieHllii ‘lHClIZ3 npaHATJE4. YCTaHOBJleHO 

COOTHOIUeHHe MGKLly IIJIOCKIIMH H IIpOCTpaHCTBeHHbIMH BO3Mj’lIJeHHRMH. nOKa3aH0, ST0 B 3BBWCA- 

MOCTU 01 YtlCJIa r@~TJIR II )‘rJIa HaKJIOHa KpH3IiC CTBI&iOHBPHOrO ABAlKeHHR AMET na60 r%iJlpO- 

&HHaMK~‘?CKyIO Ilp&fpOA)‘, nu60 CBI13aH C pWIe’?BCKOii He)‘CTOiWiBOCTbEO CTpaTEi&iIJHpOBaHHOfi 


